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The atomic coordinates of a protein derived from x-ray-diffraction studies yield 
bond lengths and bond angles which depart significantly from those obtained from the 
crystal structures of the individual amino acids. A method is described for adjusting the 
dihedral angles ($( , & , xl) of the backbone and side chains by a least-squares approxima- 
tion to the x-ray coordinates so that the computed structure conforms to those derived 
from crystal structures of its constituent amino acids. This structure may then be used 
as a starting point for conformational energy calculations. The performance of various 
minimization procedures in the least-squares computations is described, and a com- 
parison of the adjusted structure with the x-ray structure is made in terms of deviations 
of the atom positions and dihedral angles from their original values. The method is 
applied here to the x-ray coordinates of lysozyme and chymotrypsin. 

INTRODUCTION 

The possibility of using conformational energy calculations to refine the atomic 
coordinates of a protein, obtained from x-ray data at lower than atomic resolution, 
has been pointed out earlier [l]. In procedures in use in our laboratory, the chain is 
first generated by variations of dihedral angles, keeping the geometry (i.e., the bond 
angles, bond lengths, and planar trans-peptide group) fixed and maintaining as 
close a fit as possible to the x-ray data. Atomic overlaps and other errors in the 
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x-ray data are then reduced in a second stage by minimizing the conformational 
energy. The restriction to fixed geometry is then relaxed in a third stage of energy 
minimization. 

The refinement procedure of Diamond [2] is similar to our first stage, the most 
important difference being that he also provides for variation in the bond angle 
T(NCW’) at each Ca atom. The method of Levitt and Lifson [3] applies the 
conformational energy calculation directly to the x-ray data (or to the results of a 
Diamond refinement of the data), but uses flexible geometry. Our use of rigid 
geometry in the initial stages is based on the desire to explore the possibility that 
x-ray data may be fit without allowing the protein structure to depart significantly 
from currently accepted “standard” polypeptide geometry. The use of fixed 
geometry significantly reduces the computation time of the subsequent energy- 
minimization step by limiting the number of variables. 

In this paper, we discuss the first stage, the fitting of the atomic coordinates to 
the x-ray data as closely as possible. The second stage, the application of confor- 
mational energy calculations, will be presented in a subsequent paper [4]. In 
computing the deviations of a chain of given geometry from the x-ray data, the 
function to be minimized is a complicated function of the dihedral angles. There- 
fore, we also examine the application and rate of convergence of several minimi- 
zation procedures which differ in their efficiencies, for a function of this type. The 
method is applied here to hen egg-white lysozyme and to the B and C chains of 
bovine pancreatic tosyl-ol-chymotrypsin. 

METHOD 

Since the positions of the backbone atoms of a polypeptide chain are constrained 
by the positions of neighboring backbone atoms, we may expect that their 
coordinates (as deduced by x-ray data) would be more accurate than those of the 
side-chain atoms. In many crystal structure determinations, the positions of the 
side-chain atoms beyond the Co are obscured because of partial or complete 
rotational freedom (thermal motion) about the single bonds of the side chain. For 
these reasons, we fit the x-ray data with a polypeptide chain of specified geometry 
in two steps. In the first step, we consider those atoms whose positions depend only 
on the backbone dihedral angles r$$ and & [5], viz., the N, C”, C’, 0, and Cs atoms. 
In the second step, these atoms are maintained fixed in their optimized positions, 
and the side-chain dihedral angles xj [5] are adjusted to obtain the best fit to the 
positions of the side-chain atoms. In both steps, the independent variables are the 
dihedral angles, which are adjusted to obtain a least-squares fit of the polypeptide 
chain to the x-ray data. 

The basic outline of the mathematical procedure (the same for both backbone 
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and side-chain atoms) is the following. A set of dihedral angles is first computed 
from the given set of atomic coordinates. Then, using a specified geometry and 
this set of dihedral angles, a starting conformation is generated with the aid of 
transformation matrices described elsewhere [6]. The position and orientation of 
the N-terminal residue is determined in such a way that the calculated starting 
conformation is properly oriented with respect to the x-ray coordinates by either 
of two procedures: (1) The plane of the N, Ca, and CB atoms of the iv-terminal 
residue of this computed conformation is made to coincide with that of the same 
atoms from the x-ray data, or (2) The plane of coincidence is that containing the C” 
atoms of three widely spaced residues. In either procedure, the C” atom of the 
N-terminal residue (taken as the origin of the coordinate system) in the computed 
conformation coincides with that of the x-ray structure, but the other corre- 
sponding atoms do not coincide, in general, even though the planes do. Once the 
position and orientation of the first residue is determined, it is fixed throughout the 
refinement procedure. In this fixed coordinate system, the position of any atom 
with respect to the origin is represented by vectors ri and ri,, , respectively, where the 
former corresponds to the i-th atom in the computed conformation and the latter 
to its position in the x-ray structure. We define the deviation, ai , of the position 
of the i-th atom in the computed structure from that in the x-ray structure by 

and minimize the function 

ai = ri - rio (1) 

F = f II at 112, 
i=l 

(2) 

where N is the number of atoms in the backbone (including the CB atom) or 
individual side chain, respectively. The length of the vector ai (designated ]I ai 11) is 
a function of the variable dihedral angles ($i , I&) and/or x3 on the N-terminal 
side of atom i. In the case of minimization procedures which involve the use of 
gradients, the derivatives of F with respect to the dihedral angles are evaluated as 
a sum of scalar-product contributions from the various atoms k, viz., 

N 

Dj = c (ci x bkj) . ak , 
k=Z 

(3) 

where Dj is the derivative of F with respect to the j-th dihedral angle, 1 is the first 
atom whose position is altered by variation of the j-th angle, ak is given by Eq. (1) 
bkj is a vector connecting atom k to one end of the bond about which rotation 
takes place, and c5 is a vector whose components are the direction cosines of that 
bond. The summation in Eq. (3) is carried out over all atoms whose positions are 
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affected by variation of the j-th dihedral angle. This gradient expression holds for 
the case where the N-terminal end of the chain is fixed in space, as in the present 
method. Equation (3) has the property that the gradient values Di of the dihedral 
angles at the N-terminal end of the chain tend to be larger than those at the 
C-terminal end. However, since more atoms are moved by changing the former 
angles, the number of constraints is larger; hence, the dihedral angles near the 
N-terminal end are not subject to greater variation than those near the C-terminal 
end. Thus, one starts with the initial computed conformation and varies the dihedral 
angles to minimize F, the input data in the minimization procedure being the 
current value of F (and, in those procedures using gradients, the current value of Di 
for each dihedral angle). The output from each iteration of the minimization 
procedure is a new set of dihedral angles which yields a lower (and ultimately 
the minimum) value of F. 

To conserve computer time and space, the fitting to the backbone was carried 
out for twenty-residue segments. The number of terms in Eq. (3) for Dj , and the 
size of certain arrays used in some of the minimization procedures are proportional 
to the square of the number of residues, thus making a single computation for the 
entire protein impractical although not impossible. Because the chain is adjusted 
in segments, we expect our results to deviate slightly from the true least-squares fit 
to the entire protein. However, subsequent stages of refinement (as outlined in the 
Introduction) should allow any such errors to be corrected. Twenty residues 
proved to be a sufficiently large number to provide conformational correlations 
over many units. Longer segments might present difficulties because variations of 
the dihedral angles in the central region of the chain produce amplified movements 
of the atoms near the C-terminal end of the chain; thus, the dihedral angles in the 
central region would tend to vary very little. On the other hand, the use of shorter 
segments would introduce the error of end effects into a relatively higher proportion 
of residues. Tn order to minimize end effects, each new twenty-residue segment was 
made to overlap the previous segment by a variable number of residues. We have 
found that an overlap of two residues is generally sufficient, as evidenced by the fact 
that the magnitudes of the deviations in Fig. 2 and 3 (presented later) show no 
obvious trends which can be related to the ends of segments. Thus, since the 
backbone is divided into twenty-residue segments, there is no limitation on the 
overall chainlength which can be treated by this procedure. 

The fitting to the side chains was carried out separately for each side chain, after 
the best fit to the backbone was obtained. In the case of side chains which are 
symmetrically branched at a nonplanar atom (valine and leucine), the minimization 
must be carried out twice, once with the atoms beyond the branch point as given 
in the x-ray data and once with the labeling of their positions interchanged. This 
precaution is necessary because the minimization procedure occasionally will lead 
to an alternative minimum which deviates from the best conformation by 180”; 
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the first or second minimum is chosen, depending on which fits closest to the x-ray 
coordinates. This procedure is unnecessary if the side chains are planar at the 
branch point (e.g., aspartate and phenylalanine), since their conformations are 
identical after rotation by 180” (this is also true of asparagine and glutamine, since 
the 0 and N atoms are usually indistinguishable in the electron density maps). 

The minimization procedures tested for this problem were Rosenbrock’s method 
[7], a modified partan method [S], Gauss least squares [9], the Fletcher-Reeves 
method of conjugate gradients [lo], and the Fletcher-Powell modification [l l] of 
Davidon’s method [12]. The latter three make use of gradients. We have also 
tested Diamond’s modification [2] of Gauss’ least-squares method, which compen- 
sates for the nonlinearity of the derivatives of the function to be minimized. Of all 
the methods tried here, the Davidon procedure appeared to be the best for this 
problem, for reasons to be discussed below. 

The x-ray coordinates of hen egg-white lysozyme were obtained fromPhillips [13], 
and those of bovine pancreatic tosyl-ol-chymotrypsin were taken from the paper of 
Birktoft et al. [14]. Both sets of coordinates were measured directly from the 
rigid-wire models. 

Two sets of geometry were used in the fitting. In the first, the bond lengths and 
bond angles summarized by Scheraga [1] were used, and the T(NCC’) angle was 
the same for each residue. In the second set, the bond lengths and bond angles of 
the backbone were the same for each residue, except that the T(NCC’) angle and 
the side-chain geometry were different for each residue (in accord with x-ray data 
for the specific amino acids and related compounds [ 151). 

RESULTS 

Comparison of Minimization Procedures 

The various minimization procedures were tested by using them to fit the first 
twenty-residue backbone portion of lysozyme to the x-ray coordinates (without 
inclusion of the side chains beyond the C6 atoms). The two criteria by which the 
results were assessed were the speed of convergence and the final (asymptotic) 
value of the root-mean-square (rms) deviation of the calculated coordinates from 
the x-ray data. The omission of the side chains (for the reason stated at the 
beginning of the Method section) also led to a reduction in computation time 
during the fitting to the backbone. Since the initial superposition of the planes 
of the calculated and observed coordinates is inaccurate, the first few residues 
tend to absorb this error, and therefore the first twenty-residue segment will 
yield a somewhat higher asymptotic rms value than subsequent segments. The 
results from the various minimization procedures are shown in Fig. 1. First of 
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30 60 90 
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FIG. 1. Comparison of rates of convergence of various minimization procedures, for fitting 
a given geometry to the x-ray data for the backbones (including Cs) of the iirst twenty residues of 
lysozyrne. w Rosenbrock, q Modified partan, o Conjugate gradients, A Diamond, 0 Davidon, 
A Gauss. The points represent the rms deviation for each iteration. For clarity, about half 
of the points have been omitted from the curves for the Davidon and Conjugate gradient methods. 

all, it can be seen that the Rosenbrock method, the modified partan method and 
the method of conjugate gradients did not converge within the arbitrarily allotted 
time and, at the time of termination, the rms deviations from the x-ray coordinates 
were larger than those of the other methods. All of the remaining procedures led 
to the same conformation for this test case, with comparable rms deviations. For 
example, Diamond’s method’ [but with hxed +VC”C’)] and Davidon’s procedure 

1 The control parameters used for Diamond’s method were optimized in preliminary trials, 
and the values used were C, = 1.11 x 10-l and C, = 1.11 x 1O-6. The number of degrees 
of freedom (f,..) was set equal to the number of bonds in the structure (cf. Ref. [21). 
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led essentially to the same structure in about the same length of time, all of the 
computed dihedral angles differing by less than one degree for both methods. 
A second comparison of the Diamond and Davidon methods was made for the 
next twenty-residue segment of lysozyme (residues 18-37). Again the two methods 
converged to almost the same conformation with a maximum difference of three 
degrees between the computed dihedral angles. However, Diamond’s method 
was slower for the second segment, requiring eight iterations (instead of five as 
needed for the first segment), whereas Davidon’s procedure required the same time 
for both segments. However, these time differences, as well as the twofold smaller 
size of the Davidon computer program, are not overly important, and it appears 
that both procedures operate with comparable efficiency. 

By eliminating the filtering and reversion modifications (which are required 
when the coordinates of some residues are missing from the x-ray data set) from 
the Diamond method, the latter becomes essentially the Gauss least-squares 
method. The results of such a procedure are also shown in Fig. 1. This procedure 
led to essentially the same result as that obtained by the Davidon and Diamond 
methods for the test case, but at a faster rate. Despite this apparently greater 
efficiency of the Gauss method in this test case, we prefer the Davidon minimization 
procedure over the Gauss method, since the latter dictates excessively large changes 
of the dihedral angles during the first cycle and, as a result, tends to skip over some 
(possibly favorable) local minima when the initial approximation is poor; this 
sometimes results in a higher asymptotic rms value than was obtained with the 
Davidon and Diamond methods, both of which use smaller steps in the initial 
iterations. 

From the fact that the Gauss, Davidon and Diamond methods converge rapidly 
to the same conformation, it appears that the starting coordinates are sufficiently 
close to those of the x-ray data, so that the derivative function is almost linear in 
the dihedral angles. Aside from these comparisons, all minimizations in our 
computations are carried out by Davidon’s method. With this procedure, the 
minimum is reached (as in Fig. 1) in fewer than 50 iterations for the backbone of 
a twenty-residue segment. If the minimum is not detected after 50 cycles, the rate 
of change of the conformation in subsequent cycles will generally be so small that 
the minimization is halted to save computer time. The average time required for 
minimization is about 75 set for the backbone of a twenty-residue segment, and 
about 20 set for the side chains of 100 residues, on the IBM 360/65 computer.2 

2 The Fortran IV programs for fitting the backbone atoms (48K memory requirement on the 
IBM 360/65) and for fitting the side-chain atoms (54K memory requirement) have been deposited 
as Document No. NAPS-01623 with the ASIS National Auxiliary Publication Service, c/o 
CCM Information Corp., 909 3rd Ave., New York, N.Y. 10022. A copy may be secured by citing 
the document number and by remitting $2.00 for microfiche or $5.00 for photocopies. Advance 
payment is required. Make checks or money orders payable to: ASIS-NAPS. 
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Backbone Fitting 

After minimization, the deviations of the coordinates of the backbone atoms 
from the x-ray coordinates are those shown in Table I, expressed both as root- 
mean-square and as maximum deviations. In lysozyme I and II, the geometries 
used were those summarized by Scheraga [l] and by Momany et al. [15], respec- 
tively. In lysozyme III, the former geometry was used, but the fit was made only 
to the C’ and 0 atoms. It can be seen that comparable results were obtained for 
the first two cases, while the deviations for lysozyme III are significantly higher for 
all atoms except the C’ and 0 atoms. 

The results for the backbones are also expressed in terms of plots against residue 
number of the rms deviations of all backbone atoms in each residue of lysozyme I 
[Fig. 2(B)], and in terms of the deviations of the dihedral angles r$ and $ for each 

0.0 
I I I I I I t ” 1 ” 

50 100 

Residue Number 

FIG. 2. Root-mean-square deviations of the computed coordinates of lysozyme I from the 
x-ray coordinates. (A) Side-chain atoms; (R) Backbone atoms. The horizontal dashed lines 
represent the rms values over all side chains (not including Cs) and backbones, respectively. 
The solid circles in (A) designate residues for which some or all of the coordinates of the side-chain 
atoms were not reported in the x-ray data. No points are plotted in (A) for glycine, alanine and 
proline, which have no movable atoms beyond the Cs. 
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FIG. 4. Plot of computed backbone dihedral angles for Lysozyme I (A), Chymotqpsin B (B), 
and Chymotrypsin C (C). The solid circles denote glycine residues. The 5 kcal energy contours 
for glycyl-Galanine [16] are included for comparison. 
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FIG. 4C. 

The overall average and maximum deviations of the coordinates of the side-chain 
atoms for all of the structures are given in Table I, and the corresponding data for 
the dihedral angles are given in Table II. As might be expected, the deviations of 
the side-chain coordinates and angles are generally larger than those of the back- 
bone atoms. The larger deviations found for the side-chain atoms may arise in 
part from our procedure of ignoring the side-chain atoms while fitting the backbone 
atoms. However, we think that the major origins of the larger side-chain deviations 
are the inaccuracies in the x-ray data for the positions of the side-chain atoms. 

TABLE II 

Average Deviations of Computed Dihedral Angles from x-ray Values 

Protein” 

Lysozyme I 
Lysozyme II 
Lysozyme III 
Chymotrypsin B 
Chymotrypsin C 

Backbone Side-chain 
average average 

18.5” 22.6” 
20.2 22.5” 
20.4” - 
19.4 25.0” 
16.7” 26.5” 

a Same geometries as indicated in Table I. 
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Analysis of Close Contacts 

Both the errors in the x-ray data, and the procedure for initial fitting of geometry 
used here, can introduce overlaps between atoms. Therefore, it is of interest to 
examine the computed structures for possible overlaps. These are expressed in 
Table III in terms of the numbers of atoms separated by < 2 A. It can be seen that 
a number of overlaps exist. However, the second-stage refinement [4], involving 
conformational energy calculations, should relieve these overlaps. 

TABLE III 

Summary of Close Contacts 

Number within the range of 

Protein’ OS-l.0 A 1.0-1.5 A 1 s-2.0 A 

Lysozyme I 1 9 58 

Lysozyme II 1 10 54 

Chymotrypsin B 0 7 39 

Chymotrypsin C 0 3 27 

a Same geometries as indicated in Table I. 

DISCUSSION 

The procedure described here should not in itself be regarded as a tool to refine 
x-ray data, but rather as one which will allow conformational energy calculations 
to be carried out with a starting conformation which has specific bond lengths and 
bond angles and is close to that deduced from the x-ray data. Our procedure is 
based on the premise that the geometry of a polypeptide chain in a protein does not 
depart significantly from that observed in crystal structures of its constituent 
amino acids. If deviations from such geometry are required in order to obtain an 
optimum fit to the x-ray data, after completing the conformational energy calcu- 
lations with fixed geometry, they can then be introduced. In this way, the refinement 
calculations can be carried out with a minimum amount of computer time, 

While rms deviations from the x-ray coordinates have been quoted in this paper, 
these should not be regarded as a criterion of “validity” of the procedure presented 
here. Instead, as an overall criterion of validity of the whole treatment, the confor- 
mation obtained by energy minimization [4] should be compared with x-ray data 
from the native protein (and not with those from the isomorphous heavy-atom 
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derivatives). In this way many of the errors, which might exist in the currently 
reported Fourier maps, would not be involved in such a comparison. 

The main differences between our procedure and that of Diamond are the 
following. The function to be minimized here is not a quadratic function of the 
dihedral angles, and therefore the derivatives of the function are nonlinear. Since 
it is assumed in the Gauss method that the derivatives are linear in the variables, 
Diamond introduces several procedures to compensate for the nonlinearity in this 
problem. In contrast, Davidon’s minimization technique exhibits quadratic 
convergence and performs well on other complex functions [I 1, 171. In our 
procedure, we keep T(NC%‘) fixed to reduce the number of variables and conse- 
quently the computation time for the next stage of refinement, which involves 
energy minimization. Another feature of our method is the independent fitting of 
backbone and side-chain atoms to avoid introducing errors in the backbone atom 
positions due to the influence of the less-accurately-known positions of the side- 
chain atoms. Finally, we apply our backbone-minimization procedure to twenty- 
residue segments, whereas Diamond applies his method to segments of lengths 
ranging from three to seven residues. By correlating the conformation of a larger 
number of residues, we distribute the deviations over a larger number of atoms, 
and thereby avoid excessively large movements of particular atoms. 

As indicated by the results for lysozyme III in Table I, our procedure is also 
applicable when only the C’ and 0 coordinates (or a similar partial coordinate set) 
are available. Of course, the fit will improve as the data set becomes more complete. 
However, if the positions of only the C” atoms are available, there are too many 
redundancies in the values of 4 and Z/ for a given C-C” distance (which itself has 
errors in it) to enable a unique conformation to be deduced. 

With slight modifications, our method can be applied to proteins for which 
certain regions of the x-ray structure are not well defined. Finally, the method 
can be used for any selected set of geometrical parameters, and with any algorithm 
for generating the chain. 

The fitted structures obtained here are now being used as starting conformations 
for conformational energy calculations, to obtain refined structures of these 
proteins [4, 181. 
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